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Abstract

Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor

quantum well (QW) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons

(ISPs). The oscillator strength of intersubband resonances (ISBRs) strongly varies with QW parameters and electron density

because of this coupling. Using the intersubband semiconductor Bloch equations for a two-conduction-subband model, we

show that intersubband absorption spectra for narrow wells are dominated by the Fermi-edge singularity (via coupling to

repellons) when the electron gas becomes degenerate and in the presence of large nonparabolicity. Thus, the resonance peak

position appears at the Fermi edge and the peak is greatly narrowed, enhanced, and red shifted as compared to the free

particle result. Our results uncover a new perspective for ISBRs and indicate the necessity of proper many-body theoretical

treatment for modeling and prediction of ISBR line shape.
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1. Introduction

Quantum-well (QW) intersubband resonances (IS-

BRs) are known to be dressed up by collective exci-

tations [1,2], as a consequence of the Coulomb inter-

action among the electrons confined in the well, and

the dressing renders single particle description of IS-

BRs insufficient. Early studies showed that coupling to
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intersubband plasmons (ISPs)—quasiparticles which

correspond to coherent superposition of intersubband

polarizations—leads to blue shift and narrowing of the

ISBRs. This shift is called the depolarization shift.

Consequently, it was realized, using density functional

theory and self-consistent field theory, that exchange-

correlation interaction tends to reduce this blue shift.

Later, Nikonov et al used Hartree-Fock (HF) approx-

imation and demonstrated that coupling of intersub-

band polarizations to a light field is drastically modified

by the explicit nonlocal exchange-interaction-induced

vertex correction [2]. Particularly, the exchange inter-
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action strongly alters the way intersubband polariza-

tions couple to each other, leading to appearance of

Fermi-edge singularity (FES)-related line shape fea-

ture. The FES was studied for interband transitions in

a degenerate semiconductor [3], where the Mahan ex-

citon was introduced. Compared to the interband case,

repellons exist in intersubband transitions [2], due to

negative reduced mass. Repellons are un-bound collec-

tive excitations and temperature sensitive. Therefore,

for ISBRs, the polarizations couple to both ISPs and

repellons. Strictly speaking, we do not see pure repel-

lon or ISP—we have a mixed excitation, which, as lim-

iting cases, recovers the two collective excitations.

In ISBR studies in the framework of self-consistent

field theory [4], only dynamical coupling to ISPs was

considered, which allows depolarization shift and nar-

rowing of the ISBRs in the presence of nonparabolic-

ity (dispersive energy difference between ground sub-

band and the excited subband—a source of inhomo-

geneous line broadening). With vertex correction in-

cluded in the presence of nonparabolicity, there is a re-

distribution of the oscillator strength, which depends

upon QW thickness and electron density. It is then in-

teresting to see the interplay of the two types of collec-

tive excitations [5]. We adopted the Hartree-Fock ap-

proach [6,7] to set up the intersubband semiconductor

Bloch equations for a two-conduction-subband model.

Systematic investigations were done with material pa-

rameters (nonparabolicity, for example), electron vari-

ables (both density and temperature), and quantitative

comparison with InAs/AlSb QW measurements [8,9].

Here we report a model study for narrow wells that

illustrates that intersubband absorption spectra are

dominated by FES (repellons) when the electron gas

becomes degenerate and in the presence of strong non-

parabolicity. We lay out our theoretical considerations

and equations in the following section, followed by sim-

ulation results and discussions in Sec. 3. We conclude

in Sec. 4.

2. Theoretical Model

In the framework of the Hartree-Fock approxima-

tion, many-body effects on ISBRs are due to (i) self-

energy correction to the single particle energy, (ii) ver-

tex correction to the electric field an electron experi-

ences, and (iii) an additional correction to the elec-

tric field an electron experiences because of dynamic

screening from the other electrons. The first two contri-

butions come from exchange interaction (Fock term),

whereas the last one is from the direct Coulomb in-

teraction (Hartree term). The first contribution renor-

malizes the single particle energy, whereas the other

two contributions lead to the so-called local field correc-

tion to the light electric field. Higher order correlations

were ignored in the present study–they introduce ad-

ditional contributions, like screening by the exchange

interaction, and tend to modify the above first-order

contributions . Dephasing, caused by these higher or-

der correlations, was modeled with a constant rate.

The QW growth is along the ẑ direction. The equa-

tion of motion was derived for dynamic variable fmn(k)

(≡ 〈c†
mk

cnk〉, which means taking the average of quan-

tum transition from state |nk〉 to |mk〉 over the canon-

ical quantum ensemble of the system), where m or n =

1, 2 for ground (= 1) and excited subband (= 2), and

k is the in-plane wave vector. In a two-subband model,

f11(k) (f22(k)) is the electron distribution function

for the ground (excited) subband; p(k) ≡ f12(k) is

the intersubband polarization function. The resultant

equations are termed the intersubband semiconductor-

Bloch equations and given below:

ḟ11(k) = −Im[2Ωkp(k)] + ḟ11(k)|inc, (1)

ḟ22(k) = Im[2Ωkp(k)] + ḟ22(k)|inc, (2)

ṗ(k) = (ε2k − ε1k)p(k)/i~ + iΩk [f11(k) − f22(k)]

+ṗ(k)|inc , (3)

where a dot on top of a quantity stands for the time

derivative of that quantity,Ωk = [dk · E⊥(t) − ε21k ] /~

is the generalized Rabi frequency, εmk = Em(k) +

εmmk is the renormalized electron energy consisting of

subband dispersion (first term) and self-energy (sec-

ond term), dk is the electric dipole matrix element (ẑ

component only for TM light field), and ε21k is the lo-

cal field correction contribution. The local field effect

has two Coulomb sources: a vertex correction reflect-

ing the nonlocal nature of exchange interaction, and

a depolarization term arising from dynamic screening

due to direct Coulomb interaction among electrons.

The vertex term is responsible for a repellon-like res-

onance, whereas the depolarization term introduces

ISP-like response. The terms with subscript inc rep-
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resent electron-electron and electron-LO phonon scat-

terings [7], which were substituted with a constant—

relaxation time approximation. Modeling detail will be

separately published [8].

In the linear response regime for ISBRs, the elec-

tron distributions were given by the Fermi function,

and the intersubband polarization equation (3) was

linearized with respect to the light field. Then, we ap-

plied the rotating wave approximation and made an

ansatz p(k) = Pk exp(−iωt) for the incident light field

E⊥(t) = E0 exp(−iωt)ẑ. Under these treatments, Eq.

(3) was reduced to the following form:

[~(ω + iγp) − (ε2k − ε1k)] Pk

= (dkE0 − ε21k)(f22k − f11k) , (4)

where γp is the constant dephasing rate. We used nu-

merical matrix inversion to solve the above equation

and obtain Pk . Then, the susceptibility was found ac-

cording to χ(ω) ≡ P/ε0E0 with the total polarization

P given by 2S/[(2π)2V]
R

dkd∗
kPk , where V = WS, W

is the QW thickness and S is a normalization area.

The theoretical absorbance is approximately given by

ωW Im [χ(ω)] /nc. n is the background refractive in-

dex and c is the speed of light in vacuo.

3. Numerical Results and Discussions

As input to Eq. (4), the subband dispersion was as-

sumed to be parabolic, i.e., Em(k) = E
(0)
m +~

2
k

2/2mm

with the confinement energy E
(0)
m and the effective

masses determined with the quantum box model, to-

gether with all QW form factors used in simulating

ISBR spectra. (Note that different effective masses in

the subbands model nonparabolicity of the system in

an approximate way. Nonparabolicity arises from both

the bulk band structure and the heterogeneous nature

of the QW structure.) We used m1 = 0.027me, m2 =

0.039me, dk = 31 e.Å. me is free electron mass. The

dephasing rate γp was taken to be 1 meV. The single

plasmon pole approximation was used for screening [6].

We chose an electron density of 1×1012 cm−2 and tem-

perature of 12 K so that the electron gas is degenerate.

All other input parameters are standard. To better re-

veal the FES behavior introduced by the vertex cor-

rection, the QW thickness was chosen to be very small

(W = 16 Å) such that influence of the depolarization

field is reduced to a negligible level, as will be seen in

the simulated spectra.
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Fig. 1. Absorbance for a narrow single quantum well with
large nonparabolicity. For comparison, part of, or whole
many-body contributions were purposely switched off to
illustrate the individual effects: “Full result” kept all con-
tributions (solid line); “free particle” had no many-body
contributions (dotted line); “self-energy” included only ex-
change self-energy (dashed line); “exchange interaction”
neglected depolarization field (long dashed line); and “de-
polarization only” considered only depolarization field
(dot-dashed line).

The results, shown in Fig. 1, are striking. Quite the

opposite from what a theory without vertex correction

would predict (as shown by the “depolarization only”

curve), the absorbance features a strong resonance near

the Fermi energy. As mentioned, many-body effects on

ISBRs are due to self-energy, vertex correction, and

a depolarization field. To identify different roles these

contributions play, we intentionally switched part of, or

all contributions off. The “free particle” spectrum, as

a reference, was calculated without any Coulomb con-

tributions. As seen, it exhibits the fermionic nature of

electrons: phase-space filling to the Fermi level, which

is only observable in the presence of nonparabolicity.

The flat-top line broadening over 20 meV reflects the

2D nature of the phase space and severe degree of non-

parabolicity in InAs. After the self-energy is added,

the spectrum is blue shifted by about 20 meV because

the energy of the occupied ground subband is low-

ered while the empty excited subband is not affected.

(Note that the Fermi edge in ISBR spectrum is also

blue shifted accordingly as it corresponds to the low

energy end of the spectrum.) Because this energy low-

ering is momentum-dependent, the spectrum is further

flattened and broadened. The spectrum takes a drastic

transformation after vertex correction is switched on:
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a rather sharp resonance (long dashed line in Fig. 1).

The reason is simple: there exists a large degree of can-

cellation of the effects by self-energy and vertex cor-

rection. It can be shown from Eq. (3) that in the total

polarization equation, these two terms cancel out [2],

but the equation is not closed in the presence of non-

parabolicity. The resonance in this case stands for ex-

citation of the repellons by the light field, despite the

fact that such repellons are unstable. In contrast, the

“depolarization only” spectrum, with only the direct

Coulomb (Hartree) interaction, shows a negligible de-

viation from the “free particle” one. The effect by the

depolarization field is negligible because (i) the char-

acteristic number for measurement of strength of the

depolarization field is only 0.04 [2], and (ii) the pres-

ence of large nonparabolicity in InAs makes excitation

of the intersubband plasmon—coherent superposition

of intersubband polarizations—less favorable owing to

inhomogeneous broadening. It would need a relatively

thick QW and high electron density to approach the

limiting case of excitation of the plasmons. Therefore,

it is not surprising now, after including all the Coulomb

contributions, that the “Full result” closely resembles

the spectrum with exchange interaction only. The de-

polarization field slightly blue shifts the spectrum rel-

ative to the FES result. This shows unambiguously

that ISBRs are dominated by the Coulomb interaction,

which leads to collective excitations. Within a certain

parameter window, the collective excitations are of the

FES nature.

4. Concluding Remarks

Our intersubband semiconductor Bloch equations-

based model allows a more systematic study of many-

body effects on quantum-well intersubband absorption

spectra. In particular, we report here that for very nar-

row wells (thus much weakened depolarization effect),

intersubband resonances are dominated by Fermi-edge

singularity via coupling to repellons when the elec-

tron gas is degenerate and in the presence of large

nonparabolicity. As a result, the resonance appears at

the Fermi edge, largely narrowed, enhanced, and red

shifted as compared to the free particle result. The

revelation strengthens the viewpoint of the Coulomb

interaction-dominated nature of intersubband reso-

nances. The study shows the importance of interplay

of collective excitations on shaping the absorption

spectra.
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H. Schmidt, Phys. Rev. Lett. 79 (1997) 4633.

[3] G. D. Mahan, Phys. Rev. 153 (1967) 882.

[4] T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys.
54 (1982) 437.

[5] J. Li and C. Z. Ning, Phys. Rev. Lett. (to be published).

[6] H. Haug and S. W. Koch, Theory of the Electrical and

Optical Properties of Semiconductors, World Scientific,
Singapore, 1992; W. W. Chow and S. W. Koch,
Semiconductor-Laser Fundamentals: Physics of the
Gain Materials, Springer Verlag, Berlin, 1999.

[7] T. Kuhn,
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